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SUMMARY

We consider a joint model for exploring association between several correlated longitudinal markers and
a clinical event. A nonlinear growth mixture model exhibits the different latent classes of evolution of
the latent quantity underlying the correlated longitudinal markers and a logistic regression models the
probability of occurence of the clinical event according to the latent classes. By introducing a flexible
nonlinear transformation including parameters to be estimated between each marker and the latent process,
the model also deals with non-Gaussian continuous markers. Through an application on cognitive ageing,
the two advantages of the model are underlined: (1) the latent profiles of evolution associated with the
clinical event are described including covariate effects in the longitudinal model but also in the probability
of class membership and in the probability of occurence of the event, and (2) a diagnostic and a prognostic
tools are derived from the model for early detection of the clinical event using any available information
about the longitudinal markers. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In medical research, it is often of great interest to explore the association between evolution of
longitudinal quantitative outcomes and a clinical event in order to both describe the evolution of
markers during the course of a chronic disease, and to perform early detection of the disease using
data on longitudinal evolution of the quantitative markers. In the screening of prostate cancer,
modelling association between prostate-specific antigen (PSA) and prostate cancer showed that a
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significant increase of PSA could be predictive of a cancer some years later [1]. In the treatment
of Alzheimer’s disease, it is now admitted that the earlier the treatment administrated, the better
the evolution of the disease. The joint study of longitudinal markers of cognition and diagnosis of
dementia could hence be useful for initiating the treatment earlier.

For studying the association between evolution of quantitative outcomes and a clinical event
either in a descriptive perspective or a prognostic perspective, two kinds of joint models have
been proposed: shared random-effect models and latent class models. A shared random-effect
model [2, 3] consists in modelling the repeated quantitative outcome with a mixed model and
including the individual random coefficients as covariates in the model for the event. In cognitive
ageing context, Jacqmin-Gadda et al. [4] proposed a shared random-effect model with random
change points in the specific aim of estimating a change point in the cognitive decline toward
dementia. In contrast, a latent class model [1, 5, 6] assumes that the population is made of various
subpopulations with different longitudinal evolutions modelled by a latent class variable; the risk
of event depends on the longitudinal outcome only through the latent classes. Latent class models
have some advantages over shared random-effect models. Indeed, in the latter, the assumption
that the random-effects come from a common Gaussian distribution is quite unrealistic when
the population consists of several subpopulations (at least ill and not ill subjects). Moreover, by
exhibiting profiles of evolution associated with the clinical event, latent class models are simpler to
interpret compared with the shared random-effect models which estimate correlations between the
event and the random-effects. In particular, latent class models are an attractive tool for clinicians
because profiles of evolution are easily drawn for each class, the impact of covariates on the
probability of each profile are evaluated and the probability of the event in each latent class is
estimated. At last, shared-random-effect models are computationally more demanding due to the
numerical integrations across the random-effects required in the computation of the likelihood.
In some latent class models, integrals across the random-effects may have a closed form and the
dependency between the two parts of the model requires only a sum across the values of the latent
class variable.

Latent class models for joint analysis of a longitudinal outcome and an event have already been
developed. Muthén and Shedden [6] studied the relation between the shape of heavy drinking
trajectory in the 18–25 year age range and the probability of alcohol dependency at age 30. Lin
et al. [5] extended the model to irregularly spaced longitudinal readings and unequal number of
measures for each subject in the context of the prediction of prostate cancer according to PSA
profiles. Finally, Lin et al. [1] proposed to model the risk of prostate cancer using a semi-parametric
survival model instead of a logistic model.

In medical research, various markers are often collected repeatedly and it can be of interest
to make use of the information from all the markers [7–9]. In many cases, the markers are
highly correlated and may be viewed as various measures of a common underlying quantity
which is modelled using a latent process. When the markers are continuous, they are mod-
elled using the Gaussian assumption [8–10] although in many applications, they have a distri-
bution far from a Gaussian distribution. For instance, in neuropsychology, the latent cognitive
level is measured by several correlated psychometric tests which often exhibit a non-Gaussian
continuous distribution. Recently, Ganiayre et al. [11] extended the latent process approach of
Hashemi et al. [12] to model jointly ordinal psychometric tests and dementia assuming demen-
tia was defined as the crossing of an estimated level by the latent process. However this ap-
proach does not take into account subpopulation structure and is numerically untractable for
multiple longitudinal outcomes. Proust et al. [13] proposed a nonlinear model with a latent
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A NONLINEAR LATENT CLASS MODEL 2231

process to analyse multivariate and non-Gaussian longitudinal data by using flexible parametrized
nonlinear transformations to model the relationship between the longitudinal outcomes and the
latent process.

In this paper, our objective is to extend the joint model developed by Lin et al. [5] by using the
nonlinear multivariate approach described in Reference [13] in order to propose a latent class model
for the joint analysis of non-Gaussian multivariate longitudinal data and a binary outcome. This
work was mostly motivated by the study of cognitive ageing. We aimed at: (i) describing profiles
of cognitive evolution associated with dementia, and (ii) developing a tool for early diagnostic
making use of information from repeated measures of several psychometric tests.

In the following section, we define the joint nonlinear latent class model. In Section 3, we
compute the log-likelihood of the joint model and the posterior probabilities stemmed from the
mixture model. We then propose a diagnostic and a prognostic tool for detecting the event. Section 4
focuses on an application to data from the French prospective cohort study PAQUID [14]. We
conclude in Section 5 with a discussion.

2. METHODOLOGY

2.1. Nonlinear model for multivariate longitudinal data

Consider K correlated continuous outcomes. Each outcome k, k = 1, . . . , K is measured on each
subject i , i = 1, . . . , N at nik occasions. For outcome k and subject i , the vector of measurements is
yik = (yi1k, . . . , yi jk, . . . , yinikk), j representing the occasion. The times of measurements denoted
ti jk may be different for each subject and each outcome.

Consider now a latent process �i = (�i (t))t�0 defined in continuous time for each subject i
and representing the quantity underlying the K outcomes. We assume that the measurement yi jk
is related to the latent process at time ti jk through a flexible monotone increasing transformation
hk depending on an outcome-specific vector of parameters �k to be estimated. This measurement
model is specified as follows:

hk(yi jk; �k) = �i (ti jk) + �ik + �i jk (1)

where �ik are random intercepts independently distributed according to a N(0, �2�k ) distribution
and �i jk are independent Gaussian errors with mean zero and variance �2�k .

The random coefficient �ik introduces variability between the markers conditionally on the value
of the latent process. For example, in ageing context, �ik takes into account the fact that for a
same value of the latent cognition, subjects can score differently in cognitive domains associated
with the psychometric tests.

For the transformation hk , we chose the Beta cumulative distribution function (CDF) which
depends only on two parameters �k = (�1k, �2k)

T and offers a large flexibility in the shapes [13].
As the Beta CDF is defined in [0, 1], a preliminary step consists in rescaling the tests to the unit
interval.

2.2. Mixture model for the latent process

We assume the population consists of G subpopulations represented by G latent classes. Within
each latent class g, g= 1,G, the latent process follows an homogeneous linear mixed model. By
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defining cig , the latent variable which equals one if subject i belongs to the latent class g and zero
otherwise (the sum of cig over the G classes equals one), the latent process evolution for a subject
i given that he belongs to latent class g is written as follows:

�i (t)|cig=1 = Z(t)Tuig + X1i (t)
T� + X2i (t)

T�g, t�0 (2)

where the (p+ 1)-vector Z(t)T = (1, t, . . . , t p) is a time polynomial of degree p and the random-
effect vector uig is distributed according to the class-specific Gaussian distribution N(�g, �

2
g B)

with �1 = 1. The vectors X1i (t) and X2i (t) are, respectively, a q1-vector and a q2-vector of possibly
time-dependent covariates; X1i (t) is associated with the vector of fixed effects � which is common
for all the classes while X2i (t) is associated with the class-specific vector of fixed effects �g . For
ensuring the model identifiability, a covariate cannot be included both in X1i (t) and X2i (t).

We included a class-specific variance-covariance matrix for the random effects �2
g B with �1 = 1.

Thus, even if the structure of the variance-covariance matrix in each class g, g>1, is the same as
in the first class where the variance-covariance matrix is B, the global variability in class g, g>1,
can differ from the variability in the first class thanks to the proportional term �2

g .
Note that �i (t) defined in equation (2) could also include a stochastic process such as a Brownian

motion shared over the latent classes as proposed in Reference [13]. However models including
both a mixture distribution and a Brownian motion can lead to numerical problems. We thus not
included the Brownian motion in the mixture model formulation.

2.3. Model for the probability of belonging to class g

Each subject i has a probability 	ig of belonging to class g with
∑G

g=1 	ig = 1. This class mem-
bership probability is modelled using a multinomial logit regression [6] including covariates:

	ig = P(cig = 1|X3i ) = e
0g+XT
3i
1g

1 + ∑G
j=2 e


0 j+XT
3i
1 j

∀g= 1,G (3)

where 
0g is the intercept for class g and 
1g is the q3-vector of class-specific parameters associated
with the q3-vector of time-independent covariates X3i . For identifiability, 
01 = 0 and 
11 = 0. Thus,
each element of 
1g is the log odds-ratio for the probability of belonging to class g compared to
class 1 for a unit increase of the corresponding covariate.

2.4. Model for the probability of the clinical event

Consider the binary variable Di (Di equals 1 if the event occurs for i and 0 otherwise). We model
the probability of Di conditionally on the latent class variables (cig)g= 1,G . It means that Di has a
different probability to occur in each latent class g. The probability of Di conditionally on g can
also differ according to a q4-vector of covariates X4i as follows:

P(Di = 1|X4i , cig = 1) = e�0g+XT
4i�1g

1 + e�0g+XT
4i�1g

(4)

where �0g is the log-odds for the occurrence of Di in the latent class g and �1gl , the lth element
of �1g , is the log odds-ratio for the occurrence of Di in latent class g for a unit increase of X4il ,
the lth covariate of X4i .
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A NONLINEAR LATENT CLASS MODEL 2233

2.5. Covariates interpretation

A richness of the model is that it distinguishes three possible ways of including covariates with
possible overlap between time-independent covariates included in X1 or X2 and in X3 and X4.
However, as each way has a specific interpretation, inclusion of covariates must be done in
accordance with the clinical hypothesis and the objective of the analysis. Covariates included in
the latent process model (2) are assumed to impact only the mean evolution of the latent process
either through a common effect over the classes (X1) or through a class-specific effect (X2).
Covariates are included in the logistic model for the event (X4) for evaluating their impact on
the event risk after adjustment on the shape of the latent process evolution. In contrast, when a
covariate is associated with the class membership probability (X3), it means that the covariate
has an effect on both the evolution of the latent process (on the mean and the random-effects
variance) and on the event risk. Indeed, the two marginal distributions f (�i (t)) and P(Di = 1)
are given by

f (�i (t)) =
G∑

g=1
	ig f (�i (t)|cig = 1) (5)

P(Di = 1) =
G∑

g=1
	ig P(Di = 1|cig = 1) (6)

3. ESTIMATION

3.1. Maximum likelihood estimators

For a given number of classes G, parameter estimation is achieved using maximum likelihood tech-
niques assuming that missing data are missing at random. The vector of parameters � contains the
transformation parameters (�1k, �2k) for k = 1, . . . , K , the fixed effects �T,�T1 , . . . , �TG, �T1 , . . . , �TG
in the mixture model, 
02, . . . , 
0G, 
T12, . . . , 


T
1G in the probability of belonging to the latent

classes, �01, . . . , �0G, �T11, . . . , �
T
1G in the probability of occurrence of the event and the variance–

covariance parameters vec(U ),�2, . . . , �G, ��1, . . . , ��K , ��1, . . . , ��K where U is the Cholesky
transformation of B, the variance–covariance matrix of the random-effects for the first class and
ensures that B is a positive-definite matrix. In the following, we will note yi = (yTi1, . . . , y

T
i K )T

and ni =∑K
k=1 nik .

In a mixture model, the individual contribution to the likelihood can be decomposed according
to the latent classes [15]. Then, using the conditional independence assumption between yi and
Di given the latent classes, we obtain:

f (yi , Di ) =
G∑

g=1
P(cig = 1) f (yi , Di |cig = 1)

=
G∑

g=1
P(cig = 1) f (yi |cig = 1)P(Di |cig = 1) (7)
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2234 C. PROUST-LIMA, L. LETENNEUR AND H. JACQMIN-GADDA

The probability of belonging to latent class g, P(cig = 1) is given by the multinomial logit
regression (3); the probability of the event given the latent class g, P(Di |cig = 1) is given by
the logistic model (4). The density f (yi |cig = 1) of the longitudinal outcomes in their natural
scale can be computed from the density of the transformed variable ỹi = (ỹTi1, . . . , ỹ

T
i K )T with

ỹi jk = hk(yi jk). Indeed, as ỹi follows a linear mixed model given the latent class g, the density of
f (yi |cig = 1) can be written as the product of the multivariate Gaussian density of ỹi |cig = 1 and
the Jacobian of the transformations hk as in Reference [13]:

f (yi |cig = 1; �) = f (ỹi |cig = 1; �)J (yi ; �)

= 
g(ỹi ; �)J (yi ; �) (8)

where 
g is a multivariate Gaussian density with class-specific mean vector Eig = (ET
i1g, . . . , E

T
ikg,

. . . , ET
i Kg)

T and class-specific variance–covariance matrix Vig given by

Eikg = Zk
i �g + Xk

1i� + Xk
2i�k (9)

Vig =

⎛
⎜⎜⎜⎜⎝

Z1
i

...

ZK
i

⎞
⎟⎟⎟⎟⎠

�2
g B(Z1T

i . . . ZKT
i ) +

⎛
⎜⎜⎜⎝

�1 0 0

0
. . . 0

0 0 �K

⎞
⎟⎟⎟⎠ (10)

with �k = �2�k1nik1
T
nik + �2�k Inik

where Zk
i = (Z(ti1k), . . . , Z(tinikk))

T is the nik × (p+ 1)-matrix of time polynomials for subject i
and test k; Xk

1i = (X1i (ti1k), . . . , X1i (tinikk))
T and Xk

2i = (X2i (ti1k), . . . , X2i (tinikk))
T are, respec-

tively, the nik × q1-matrix and nik × q2-matrix of time-dependent covariates with a common effect
across the classes or a class-specific effect, and In and 1n are, respectively, the identity matrix of
size n and the n-vector of 1’s.

The term J (y; �) is the Jacobian of the Beta CDF of the longitudinal outcomes y at the parameter
vector value �:

J (yi ; �) =
K∏

k=1

nik∏
j=1

y
�1k−1
i jk (1 − yi jk)�2k−1

B(�1k, �2k)
(11)

where B(�1k, �2k) is the complete Beta function with parameters �1k and �2k .
At last, we obtain the following closed form for the log-likelihood of the joint model:

L(y; �) =
N∑
i=1

ln

⎛
⎝ G∑

g=1

e
0g+XT
3i
1g

∑G
j=1 e


0 j+XT
3i
1 j

× 
g(ỹi ; �) × [e�0g+XT
4i�1g ]Di

1 + e�0g+XT
4i�1g

⎞
⎠

+
N∑
i=1

ln(J (yi ; �)) (12)
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A NONLINEAR LATENT CLASS MODEL 2235

In spite of the nonlinear structure of the model, the log-likelihood has a closed-form and can
be maximized using standard maximization algorithms as described in next section.

3.2. Optimization algorithm

The log-likelihood (12) is maximized using a modified Marquardt algorithm [16]. This is a Newton–
Raphson like algorithm where the diagonal of the Hessian matrix at iteration l, H (l), is inflated to
obtain a positive definite matrix: H∗(l) = (H∗(l)

i j ) with H∗(l)
i i = H (l)

i i +�[(1− �)|H (l)
i i |+ �tr(H)] and

H∗(l)
i j = H (l)

i j if i �= j . Initial values for � and � are � = 0.01 and �= 0.01. They are reduced when

H∗ is positive definite and increased if not. The estimates �(l) are then updated to �(l+1) using the
current modified Hessian H∗(l) and the current gradient of the parameters g(�(l)) according to the
formula:

�(l+1) = �(l) − �H∗(l)−1g(�(l)) (13)

where, if necessary, a linesearch for � ensures that the log-likelihood is improved at each iter-
ation. The convergence is reached when the three following convergence criteria are satisfied:∑m

j=1 (�(l)
j − �(l−1)

j )2�10−4, |L(l) − L(l−1)|�10−4 and g(�(l))TH (l)−1g(�(l))�10−5. First and
second derivatives are computed by finite differences. Standard errors of the elements of B are
computed by the �-method while standard errors of the other parameters are directly computed
from the inverse of the observed Hessian matrix.

A mixture model is estimated with a fixed number of components G. To choose the optimal
number of components, estimated models with different values of G are compared using the
Bayesian information criterion (BIC) [17]. Due to the possible multimodality of the likelihood,
each model is estimated using several sets of initial values to ensure convergence to the global
maximum. Moreover, due to the complexity of the model, simple models are first estimated in
order to provide adequate initial values for more complicated models.

3.3. Posterior classification

Posterior classification of the subjects in the different latent classes can be achieved in a mixture
model using posterior conditional probabilities. These posterior conditional probabilities 	̂y,D

ig to
belong to class g given the observations (yi , Di ) are computed using the Bayes theorem as follows:

	̂y,D
ig = P(cig = 1|yi , Di ; �̂) = P(cig = 1) f ((yi , Di )|cig = 1; �̂)∑G

l=1 P(cil = 1) f ((yi , Di )|cil = 1; �̂)
(14)

where the denominator is the contribution to the likelihood of subject i at the optimum. Each
subject is then classified in the profile or latent class in which he has the largest probability 	̂y,D

ig
of belonging.

In our model, information is of two kinds: information from repeated measures of the markers
yi and information from the event occurence Di . In a prognostic or diagnostic perspective, it could
be of interest to consider the posterior probabilities 	̂y

ig of belonging to class g given only the
longitudinal observations yi . These probabilities are computed as follows:

	̂y
ig = P(cig = 1|yi ; �̂) = P(cig = 1) f (yi |cig = 1; �̂)∑G

l=1 P(cil = 1) f (yi |cil = 1; �̂)
(15)
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2236 C. PROUST-LIMA, L. LETENNEUR AND H. JACQMIN-GADDA

3.4. Diagnostic and prognostic tools

To propose a diagnostic and a prognostic tool based on repeated marker measures, we compute
from the estimated parameter vector �̂ the probability of occurence of the event conditionally on
the longitudinal observations as follows:

P(Di = 1|yi ; �̂) =
G∑

g=1
P(Di = 1|cig = 1; �̂)P(cig = 1|yi ; �̂)

=
G∑

g=1

e�0g+XT
4i�1g

1 + e�0g+XT
4i�1g

× 	̂y
ig (16)

For each threshold between 0 and 1, we classify as demented the subjects with P(Di = 1|yi ; �̂)

above the threshold and compute sensitivity and specificity of the procedure. The ROC curve
may then be drawn and the area under the ROC curve (AUC) may be computed to evaluate the
performances of the model in detecting the event.

4. APPLICATION

4.1. The PAQUID cohort study

The data come from the French prospective cohort study PAQUID, initiated in 1988 to study
normal and pathological ageing [14]. Subjects included in the cohort were 65 years and older at
the initial visit and were followed six times with a visit at one (T1), 3 (T3), 5 (T5), 8 (T8), 10
(T10) and 13 (T13) years after the initial visit (T0). At each visit, a battery of psychometric tests
was completed and a two phase screening procedure was carried out for the diagnosis of dementia.
Subjects who met DSM-III-R criteria [18] A, B and C (impairment of memory and at least one
other cognitive function and interference with daily living) or those presenting a decline of three
points or more on the Mini Mental State Examination [19] scale since the previous visit were seen
by a neurologist who made the clinical diagnosis. Measurements at the initial visit were excluded
from the analysis because of a first passing effect [20].

The aim of the analysis was both to describe the profiles of cognitive evolution up to T13
in a subpopulation of subjects free of dementia until T10, and to propose a diagnostic and a
prognostic tool of dementia using repeated measures of psychometric tests. Three psychometric
tests were considered (K = 3): the Isaacs Set Test (IST) [21] shortened at 15 s which evaluates
verbal fluency, the Benton Visual Retention Test (BVRT) [22] which evaluates visual memory
and the Digit Symbol Substitution Test of Wechsler (DSSTW) [23] which evaluates attention and
logical reasoning. For the three tests, low values indicate a more severe impairment.

The sample included 834 subjects who were visited at T13, were visited and free of dementia
at T10, and completed each of the three psychometric tests at least once between T1 and T13.
The median number of measures was 4 for the DSSTW and 5 for the IST and the BVRT. Among
the 834 subjects, 114 had a positive diagnosis of dementia at T13-visit. The time variable was
the exact time in decade between the age at the T13-visit and the age at the current visit. Thus
it ranged from about −1.2 to 0. The polynomial function of time chosen for the evolution of the
latent process included a random intercept, a random slope and a random quadratic slope. The
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A NONLINEAR LATENT CLASS MODEL 2237

Table I. Likelihood, BIC and AUC of the adjusted model for various
numbers of latent classes.

Number of
classes (G) Number of parameters Log-likelihood BIC AUC

1 26 −29337.87 58850.61
2 33 −29227.74 58677.44 0.855
3 40 −29216.26 58701.57 0.860
4 47 −29206.93 58730.00 0.862

covariates included in the model were educational level (graduated from primary school versus
not graduated), gender and a dichotomous variable for age with a cut-off at the median (less than
83 years old at T13-visit versus more than 83 years old at T13-visit). The three covariates were
tested in the three parts of the model: in the longitudinal model either as a common effect across
classes (X1) or as a class-specific effect (X2), in the model for the probability of class membership
(X3) and in the model for the probability of occurence of the event (X4).

4.2. The nonlinear latent class model

The model adjusted on the three covariates was estimated for a number of latent classes G varying
from 1 to 4. Whatever the number of classes, the best adjustment on covariates included age,
educational level and gender in association with the mean latent cognitive level but not with the
time variables. These associations with the trajectories were common across the classes. Educational
level was found associated with the probability of dementia at T13 after adjustment on the latent
classes, and for the model with 2, 3 and 4 classes, age was also associated with the probability of
latent class membership.

Using the BIC [17] for selecting the model with the optimal number of latent classes, the model
with two classes was retained (see Table I). Fixed-effect estimates are presented in Table II and
the two predicted evolutions of the latent process (Z(t)�̂g, g= 1, 2) are displayed in Figure 1.

The first class trajectory is quite linear with a slight decline until T13-visit. As seen in Table II,
the associated probability of dementia is almost null (exp(−2.815)/(1 + exp(−2.815))= 0.057).
This trajectory seems to represent the mean cognitive evolution in normal ageing. In contrast,
the mean cognitive level in the second class is always lower than in the first class and the
decline is sharper and nonlinear. The associated probability of dementia is very high (exp(2.715)/
(1 + exp(2.715))= 0.938). Thus this trajectory seems to represent the mean decline in a pre-
diagnostic phase of dementia. In the following, we will call class 1 ‘slight decline’ class and class
2 ‘marked decline’ class.

Whatever the class trajectory, subjects who graduated from primary school had a significantly
better mean cognitive level, subjects older than 83 years had a significantly lower cognitive level
than younger subjects and men had a significantly higher mean cognitive level. After adjustment
on the latent classes, educational level was found associated with the probability of dementia
at T13: adjusted on the shape of the cognitive decline, subjects not graduated from primary
school had a higher risk of dementia at T13 (OR= 5.464, CI95 per cent =[1.107; 26.967]) than
subjects graduated from primary school. This effect of education on the risk of dementia was not
significantly different according to the classes. Finally, age was found to be associated with the
class membership probability. The odds-ratio for being in the marked decline class rather than in
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2238 C. PROUST-LIMA, L. LETENNEUR AND H. JACQMIN-GADDA

Table II. Estimations of the fixed effects in the final nonlinear mixture model
with two latent classes.

Parameter Estimate Standard-error

Class 1
Intercept 0.511 0.015
Linear slope −0.0484 0.0063
Quadratic slope 0.0100 0.0048

Class 2
Intercept 0.376 0.021
Linear slope −0.259 0.024
Quadratic slope −0.106 0.017

Covariates
Gender∗ 0.0121 0.0055
Educational level† 0.108 0.008
Age‡ −0.0364 0.0057

Probability of dementia at T13
Intercept class 1 (�01) −2.815 0.453
Intercept class 2 (�02) 2.715 0.916
Educational level† −1.698 0.815

Probability of belonging to class 2
Intercept −2.188 0.208
Age‡ 0.889 0.231

∗Reference: female.†Reference: no diploma.
‡Reference: younger than 83 years old at T13-visit.

the slight decline class was 2.433 (CI95 per cent =[1.547; 3.826]) for subjects above 83 years old
compared to younger people. Older subjects were more prone to experiment both a sharp cognitive
decline and a dementia.

The class-specific scale parameter in the variance–covariance matrix for the random-effects was
estimated at �2 = 1.056 (SE= 0.105). Thus, the variability was not significantly different for the
two classes.

4.3. Posterior classification

According to the posterior class-membership probabilities given all the observed data 	̂y,D
ig , 719

subjects were classified in the slight decline class including 708 subjects without dementia at
T13 and 115 subjects were classified in the marked decline class including 103 subjects di-
agnosed demented at T13. This almost perfect discrimination underlines that we were able to
discriminate with this model the evolution of pre-demented and normal subjects. Nevertheless,
a good discrimination was expected since information about dementia was used to compute the
posterior probabilities.

Thus, classification obtained using only information from the longitudinal outcomes, that is to
say 	̂y

ig , is displayed in Table III: 749 subjects were classified in the slight decline class including
685 subjects without dementia at T13 and 85 subjects were classified in the marked decline class
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Figure 1. Predicted trajectories for the two classes of the adjusted nonlinear latent class model for a
female without diploma and younger than 83 years old at T13 (plain lines=mean predicted evolution;

dashed lines= 95 per cent confidence bands).

Table III. Posterior classification from 	̂y
ig and dementia diagnosis at T13.

Classification

Dementia diagnosis at T13 Slight decline class Marked decline class Total

Positive 64 50 114
Negative 685 35 720
Total 749 85 834

including 50 subjects with a positive diagnosis of dementia at T13. As expected with the significant
effect of age on class membership, we found that subjects classified in the marked decline class
were older than those classified in the slight decline class (67 per cent were older than 83 years
at the end of the follow-up versus 44 per cent in the slight decline class). In contrast, the two
posterior classes did not differ according to gender (42 per cent of men in the marked decline
class versus 38 per cent in the slight decline class) and educational level (78 per cent with a high
educational level versus 81 per cent).

According to this classification, we also computed in Table IV the means of the posterior
probabilities of belonging to each class l over the ng subjects classified in class g ((1/ng)

∑ng
i=1 	̂y

il ,

(g, l) ∈ {1, 2}2), high diagonal terms indicating a good classification quality [24]. The mean of
the posterior probabilities to be in the slight decline class was 0.920 for subjects classified in
this class showing a very high discrimination and an unambiguous class affectation. In contrast,
the mean posterior probability to be in the marked decline class was 0.753 for subjects classified
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2240 C. PROUST-LIMA, L. LETENNEUR AND H. JACQMIN-GADDA

Table IV. Posterior classification table: mean of the posterior probabilities of belonging
to each class l over the ng subjects classified in class g ((1/ng)

∑ng
i=1 	̂y

il , (g, l)∈ {1, 2}2).
Class g\class l Slight decline class Marked decline class

Slight decline class 0.920 0.080
Marked decline class 0.247 0.753
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Figure 2. Empirical distribution of the posterior probabilities of being in the slight
decline class (a) and in the marked decline class (b).

in this class revealing a more ambiguous affectation. Indeed, subjects classified in the marked
decline class had a non-negligible mean posterior probability of being in the slight decline class
((1/n2)

∑n2
i=1 	̂y

i1 = 0.247). The histogram of the posterior probabilities displayed in Figure 2
emphasizes the more ambiguous affectation to the marked decline class.

4.4. Adequation of the model

To evaluate the fit of the data, we compared for each test and each class, the weighted mean
trajectory of the observed scores with the weighted mean trajectory of the predicted values. For
each observation, that is each triplet (i, j, k), the marginal predicted value in the natural scale of the
outcome, that is the estimate of E(h−1

k (ỹi jk)|cig = 1) was obtained using a numerical integration

of h−1
k (ỹi jk) using the estimated Gaussian density 
g(ỹi jk; �̂) defined by (9) and (10). Then, at

each visit, the mean of the available marginal predictions weighted by the posterior probabilities
was computed and compared with the corresponding weighted mean of the observed values. The
results are displayed in Figure 3. For the two classes, the fit is good whatever the psychometric
test indicating a good adequacy of the model.

4.5. Diagnosis of dementia

To evaluate the performances of the model to diagnose dementia using only information about
the psychometric tests, we computed the posterior probabilities of dementia P(Di = 1|yi ; �̂) using
(16) and built the ROC curve represented in Figure 4. The area under the curve was 0.855. We
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Figure 3. Marginal predicted weighted mean evolution (crosses) versus observed weighted
mean evolution (plain line) with its 95 per cent confidence bands (dashed lines) for each class

and each test in their natural scale according to the visits.

also performed a leave-one-out procedure for computing the area under the curve. It consisted in
leaving iteratively each subject i out, estimating the parameters �̂(−i) without i and computing
P(Di = 1|yi ; �̂(−i)). This procedure lead to a very close AUC (0.852).
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Figure 4. ROC curve of the posterior probabilities of dementia from the multi-
variate nonlinear latent class model for the diagnosis analysis (N = 834) in grey

plain line and for the prognosis analysis (N = 1059) in black plain line.

One advantage of this diagnostic tool for dementia is that it can be used whatever the number
and the times of measurements of the cognitive tests in the past 12 years and even if the subject has
measurements for only one test. We compared the diagnostic ability of the estimated multivariate
model (Table II) according to the number of psychometric tests used for the computation of the
posterior probabilities of dementia.

Table V clearly shows that the AUC increases with the number of psychometric tests used for
computing the posterior probability of dementia, underlining the interest of a flexible model which
can handle multivariate data.

We compared the performance of our model with a simpler method for diagnosing dementia
according to cognitive ability, that is a logistic regression including six explanatory variables:
age, educational level, gender and cognitive test scores for the IST, the BVRT and the DSSTW
at the last visit T13. As the logistic regression requires no missing data for all the explanatory
variables included in the model, the model was estimated on a reduced sample of 647 subjects
having a measure of each test at the T13-visit. On this reduced sample, the AUC from the logistic
regression was 0.852 which is nearly as good as for our multivariate longitudinal model. However,
187 subjects (22 per cent of the sample) with incomplete measures were excluded from this analysis
including a high proportion of demented subjects (58 demented were excluded among the 114
demented of the initial sample). By using longitudinal and multivariate cognitive assessment, our
model allows to compute a probability of dementia whatever the available information on the three
tests unlike the logistic regression. It is of particular interest in epidemiological studies in which
subjects in pre-dementia phase do not often complete all the tests.

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2007; 26:2229–2245
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A NONLINEAR LATENT CLASS MODEL 2243

Table V. Areas under the curve (AUC) obtained from the multivariate nonlinear mixture
model in a diagnosis analysis (probabilities of dementia at T13 computed using cognitive
measures between T1 and T13) or in a prognosis analysis (probabilities of dementia at

T10 computed using cognitive measures between T1 and T8).

Psychometric tests used to compute AUC AUC (prognostic
probabilities of dementia (diagnostic at T13) at T10 given T1–T8)

IST 0.775 0.840
BVRT 0.796 0.788
DSSTW 0.808 0.802
IST + BVRT 0.831 0.841
IST + DSSTW 0.831 0.832
BVRT + DSSTW 0.842 0.814
IST + BVRT + DSSTW 0.855 0.837

4.6. Prognosis of dementia

Even if the model was built in a diagnostic perspective, it can be used to compute probability of
dementia at time T knowing at least one measure from IST, BVRT or DSSTW in the last 12 years.
Thus, it can be used as a prognostic tool. We explored the ability of our model to predict dementia
2 years after the last cognitive measurements. More specifically, we tried to predict dementia at
T10 using cognitive measurements between T1 and T8 in the PAQUID study. In this way, for each
of the 1059 subjects with at least 1 measure at each test between T1 and T8 and with a negative
diagnosis of dementia at T8, we computed the probability of dementia at T10 knowing measures
collected between T1 and T8 and using the vector of parameters estimated on the previous sample
(Table II). As for the previous analysis on diagnosis of dementia, we compared the results according
to the number of psychometric tests used to compute the probability of dementia. We imposed that
each subject had at least one measure at each test to compare the AUC according to the number
of tests on samples of the same size. The results are presented in Table V.

Whatever the number of psychometric tests used for computing the probability of dementia
at 2 years, the AUC was quite high. The ROC curve when using the three psychometric tests
is displayed in Figure 4. For the BVRT and the DSSTW, we found again that the AUC for the
prognosis increased when using more information. However, in this sample, the prognostic ability
of IST was very good and did not increase when other tests were added.

5. DISCUSSION

We proposed a nonlinear latent class model for multivariate longitudinal outcomes and a binary
variable. In ageing context, by modelling jointly cognitive trajectory using three psychometric
tests and dementia diagnosis, we distinguished the cognitive decline in a normal cognitive ageing
process and the cognitive decline in a pre-diagnosis phase of dementia. From the estimates of the
model, we proposed a diagnostic and prognostic tool and compared, according to this tool, the
ability of our model to predict dementia when varying the quantity of available information on
cognitive ability. Thus, we underlined that using several cognitive tests increased the power of the
diagnostic and prognostic tool.
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2244 C. PROUST-LIMA, L. LETENNEUR AND H. JACQMIN-GADDA

A key aspect of the flexibility of our model lies in the nonlinear transformations which allow
to model continuous outcomes with a distribution far from a Gaussian distribution. Beta CDFs
were chosen because firstly, they are flexible functions with only two parameters per marker and
secondly, they gave a very good fit of the cognitive test scores in our elderly sample as it was
previously shown [13]. The interest of these estimated transformations was extensively discussed
in Reference [13] showing in particular that they give interesting results about the metrological
properties of each psychometric test.

In a perspective of proposing diagnostic and prognostic tools, one could wonder whether it is
sensible to select the optimal number of classes using the BIC criterion which tends to retain
a parsimonious model. One could prefer selecting the optimal number of classes using a less
conservative criterion like the AIC for example, or stopping the process when the AUC of the
model is not significantly improved. In our application on dementia diagnosis, the AUC from the
three and four class model were just a little improved so we retained only two latent classes of
evolution, the first one representing an almost normal cognitive ageing process and the second one
the cognitive decline in a pre-diagnosis phase of dementia. By stratifying on dementia status and
estimating the two separated multivariate models, we could have probably obtained quite the same
evolutions but we would not have been able to compute a diagnostic tool of dementia.

Our joint model is an extension of the classic mixture models [25, 26]. We no longer study
the main heterogeneity in the population, we rather investigate the unobserved subpopulation
structure in association with the clinical event. Such joint models including a mixture model for
longitudinal data and a logistic regression had already been proposed by Lin et al. [5] for studying
one longitudinal outcome with a Gaussian assumption. They had then improved their model by
replacing the logistic regression by a survival model [1]. In this paper, we focused on a multivariate
approach allowing flexible relationships between the observed markers and the latent process. We
only considered a logistic regression for the clinical event but we showed that even without a
time-to-event model, we were able to propose a prognostic tool in addition to the diagnostic tool.
However, as a model for a binary event does not account for time-to-event, parameters must be
estimated on a selected sample for which the dementia status is known at a given time. To avoid
this selection in the estimation step and include cases where the event arises at any time, the model
should be next extended for including a proportional hazard model for the time-to-event instead
of the logistic regression.
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